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Abstract. Clinical evidence suggests that sleep pose analysis can shed
light onto patient recovery rates and responses to therapies. In this work,
we introduce a formulation that combines features from multimodal data
to classify human sleep poses in an Intensive Care Unit (ICU) envi-
ronment. As opposed to the current methods that combine data from
multiple sensors to generate a single feature, we extract features inde-
pendently. We then use these features to estimate candidate labels and
infer a pose. Our method uses modality trusts — each modality’s clas-
sification ability — to handle variable scene conditions and to deal with
sensor malfunctions. Specifically, we exploit shape and appearance fea-
tures extracted from three sensor modalities: RGB, depth, and pressure.
Classification results indicate that our method achieves 100 % accuracy
(outperforming previous techniques by 6 %) in bright and clear (ideal)
scenes, 70 % in poorly illuminated scenes, and 90 % in occluded ones.

1 Introduction

The tenets of evidence-based medicine implore clinicians and researchers to col-
lect and process all available data in a specific healthcare setting. New methods
for non-disruptive monitoring and analysis of patient sleep poses, patterns, and
quality add objective metrics for predicting and evaluating health-related scenar-
ios. There are clear clinical examples where patient poses are correlated to med-
ical conditions. For example, sleep positions affect the symptoms of sleep apnea
— where airway obstructions are greatest in supine positions [20]. The symptoms
of gastroesophageal reflux disease (GERD) are reduced by laying on the side [11].
Body positioning is important in acute lung injury and prone positioning has been
shown to improve outcomes in adult respiratory distress syndrome [5]. Prone and
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supine positions worsen back and spine problems, so lateral positioning is recom-
mended by medical experts [4]. Physicians recommend that pregnant women lay
on their sides to improve fetal blood flow [16]. The standard of care for immobile
ICU patients is to rotate them every two hours to prevent decubitus ulcers, but
this is rarely accomplished or effective [22].

The previous examples show that poses can be manipulated to improve
patients’ health. Therefore, accurate pose detection and classification is relevant
to healthcare. The findings in [2,10,23] correlate body positions to various effects
on health and quality of sleep of ICU patients. The authors state that identifi-
cation of sleep poses in natural scenarios helps to evaluate sleep and to improve
diagnosis and treatment of sleep disorders. Current physiological systems use
machines that physically connect to the patients, making them disruptive and
intrusive. Purely observational systems use images and pressure arrays to esti-
mate poses but have been unable to handle natural scenes — indoor ICU scenes
with variable illumination and occlusions such as blankets and pillows.

There are two major approaches for the study of sleep. One approach uses
bio-status data to monitor a patient’s metabolic state during sleep [12,14,18].
The polysomnogram is the standard equipment used in these studies. Its motion-
restricting probes connect to the patient’s head, face, and respiratory system,
monitoring brain activity, rapid-eye-motion (REM) signals, and levels of oxygen
and carbon-dioxide in the blood. The second approach is based on the identifica-
tion of sleep patterns using non-intrusive equipment and human observers [7,15].
Computer vision methods are used in [13,15,18] but are limited to ideal scenes.
In both approaches, the staging needed for observation affects the measurements.
In order to overcome these issues, we propose to use three non-invasive, inde-
pendent sensor modalities: RGB, depth, and pressure. Existing techniques are
able to estimate human poses in ideal scenes using these modalities indepen-
dently, but they fail in challenging ones. In [24] the authors present a generative
approach that uses deformable parts model (DPM), commonly used in RGB
images. Unfortunately, the DPM method requires images with relatively uniform
illumination and with only minor self-occlusions. The discriminative approach
from [21] uses depth images and is robust to illumination changes. However,
this method requires clean depth segmentation and contrast, and it fails under
occlusions. Neither of these methods works in unconstrained ICU scenarios.

Our work is most similar to [9], where standard RGB images and a low-
resolution pressure array were used to classify sleep poses from static images.
Their method used normalized geometric and load distribution features that
depended on a clear view of the scene and the actor. They used interdepen-
dent data from RGB and pressure sensors — if one modality failed, no result
was produced. Our method uses data from three modalities independently and
then combines their estimation results using modality trusts to infer the final
pose label. Moreover, our classification method is independent of body type and
we use it to improve the unimodal decision of two common classifiers: Linear
Discriminant Analysis (LDA) and Support Vector Classifier (SVC). The major
contributions of this work are:
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1. A new system configuration of complementary sensors to analyze sleep poses
in healthcare scenarios. This modular system can be easily adapted to address
a number of healthcare tasks and natural indoor scene constraints.

2. A new set of tuned features that capture the shape and appearance of human
sleep poses.

3. The formulation of a novel multimodal concept for this application called
modality trust, which leverages the ability of each individual modality for
reliably representation of the human sleep poses.

2 System Description

The proposed system shown in Fig.1 uses three sensor modalities: a single
Carmine camera, with standard RGB and depth sensors by Primesense, and a
high-resolution, pressure-sensing mattress by Tekscan. The Carmine and Tekscan
devices are controlled by DuoCore computers, which communicate via TCP-IP
and are synchronized using Network Time Protocol (NTP). The sensors monitor
the bed and actors in a variety of poses and scenes as described in Sect. 2.1. The
scene context (e.g., illumination and occlusions) is captured by the illumination,
proximity, and radio-frequency identification (RFID) sensors.

. D ol D @ D e
“~. Pressure Mat .’ ———r
- i ressure Mat

Fig. 1. Top and side profiles (left) of the multimodal system with top camera view
(red) and pressure mat (green) and mock-up ICU (right) for data collection and testing
(Color figure online).

2.1 Data Collection

Sleep poses are collected from five actors, who were asked to assume each of the
ten poses from set Z = {Background, Soldier U, Soldier D, Faller R, Faller L,
Log R, Log L, Yearner R, Yearner L, Fetal R, Fetal L}. The set Z has size L and
is indexed by I. The letters in the labels U and D stand for facing-Up and facing-
Down and L and R stand for laying-on-Left and laying-on-Right. The letter and
subscript z; is used to identify a specific pose label (e.g., z9 = Background). The
scene conditions are simulated using three illumination levels: bright (light sen-
sor within 70-90 % saturation), medium (50-70 %), and dark (below 50 %) and
four occlusion types: clear (no occlusion), blanket (covering 90 % of the actor’s
body), blanket and pillow, and pillow (between actor’s upper body and the pres-
sure mat). The illumination intensities are assigned using the percent saturation
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Fig. 2. Sample dictionary of sleep poses showing one actor in various poses and scenes.
The top row shows the pose symbol, configuration, and orientation. The second row
shows the pose names, where L and R indicates Left or the Right orientation, and U and
D indicate facing Up or Down. The third, fourth, and fifth rows are the R, D, P pose
representations. The D images on the fourth row are manually delineated to highlight
the background and body differences. Finally, the bottom two rows describe the scene.

values and the occlusions are detected using inexpensive RFID and proximity
sensors, all by .NET Gadgeteer. The combination of the illumination levels and
occlusion types generates a 12-element scene-set C' = {(bright, medium, dark)
x (clear, blanket, pillow, blanket + pillow)}. Single illumination and occlusion
combination (e.g., bright and clear) is represented using ¢ € C. The dataset is
created assuming one scene to be the combination of one actor in one pose and
under a single scene condition. From one scene four measurements are collected
— three modalities from one camera view (RGB, depth, and a synthetic binary
mask) and one pressure image. The data collection included background (bed
without actor) images, and images of the actors in each of the 10 poses (11 classes
including the background) under each of the 12 scene conditions. The process is
repeated ten times for each of the five actors; this generates a dataset of 26,400
images (5 actors x 10 sessions x 4 images x 11 classes x 12 scenes). The modal-
ities are calibrated using the methods from [6]. Sample data is shown in Fig. 2
and the complete set is available online at http://vision.ece.ucsb /research.

2.2 Feature Extraction

Features are extracted from R, D, P images after subtracting the background,
converting them grayscale, and normalizing their pixel intensities.

Histogram of Oriented Gradients (HOG). The proposed formulation uses
the HOG feature descriptor [3], extracted from R images, based on its ability to
represent human limb structures, which is demonstrated in [24].
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Image Geometric Moments (gMOM). Moments [8] extracted from the D
and P images are used to describe the shape of the poses and are computed via:

M;j =Y I(x,y)2’y, (1)
x’y

where moment order is given by ¢ + 7, ¢,7 > 0 are the horizontal and vertical
orders, and I is the binary intensity value (0 or 1) for pixel at coordinates z, y. Its
abilities for pose shape representation were demonstrated in [1,19]. The images
are tiled using a six-by-six grid and the raw pixel values ([0,1]) are used to
compute up to the third moment from each block.

3 Multimodal Classification with Trust

The modality trust (w¢,) is defined as the ability of feature vector f,,, for pose
classification. The vector f,, is extracted from modality m under scene conditions
c. The trusts are estimated at training, using all the features in the subset Xy, ..
to compare estimated pose label Z; to the ground-truth label z;; and to record

the matches. The learned trusts are used to infer a final multimodal label.

3.1 Trust Estimation

The set of modality trusts {w1, wa, ... w }° is estimated for modalities in N and
condition c¢. The estimation of the modality trusts is divided into three stages:
unimodal training, classifier validation, and trust normalization.

Unimodal Training. In this step unimodal SVC and LDA classifiers CLF;,, are
trained using the features f,, in X, ,,,. Bach of the unimodal classifier outputs
a vector of length L of the form [§; x(fm)] = [81.6(fm), ---,8L.k(fm)]. Given a
datapoint X (with M unimodal feature vectors f,,), the § elements contain the

scores for each of the L labels in Z.

Classifier Validation. At this stage the estimated unimodal labels Z; (m)
are compared to the ground truth label Z* from data point Xj. The label

matches are stored in the array b of dlmenblons [K, M] for all k datapoints
(1<k <K, and K = | X44in|) using Algorithm 1.

Trust Normalization. Finally, the trusts are estimated with following equa-
tion:

and normalized so that the sum is one.
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Algorithm 1. Unimodal Classifier Validation Vector (b)

1: procedure COMPARE(Zi’k«m), Z,{ k) > Estimated and ground truth labels
2 b« 0,m,k=0, > Initialize array
3 for k do

4 for m do

5: if Z;, (™ = Z. then

6: blk,m] — 1

7: else

8 b[k, m] — 0

9: end if

10: end for

11: end for

12: return b > Vector of size K, M

13: end procedure

3.2 Multimodal Formulation

The overall description of the system is shown in Fig.3. It uses the unimodal
sensor training data (features) to estimate the trust values. Then the system
uses the trusts to refine mulitmodal classification and produce a final pose
label for a given test datapoint. First, the system applies a weighted scor-
ing formulation to the unimodal label candidates obtained from the features
[f1, f2, f3] = [HOG(R), gMOM(D), gMOM(P)] of datapoint Xj. Finally, the
multimodal label Zi, « 18 the one with the maximum weighted score as follows:

c _ Q¢ _..c c
where wy, represents the predictive power of feature f,, with scene conditions
c . . . ~ ~
¢, and CLF, is the unimodal classifier score vector [81x(fm), --.,8.k(fm)]
Multimodal Feature Unimodal Trust Unimodal Multimodal
Training Extraction Classifiers Estimation Trusts Trusted
Data Classifier
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Fig. 3. Diagram of our proposed multimodal sleep pose classification method. The sys-
tem uses modalities to exploit various scene and sensor properties. Second, features are
extracted from the R, D, P pose representations and used to train unimodal classifiers
and estimate modality trusts. Finally, trusts are used to refine the output.
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(elements are label scores). Thus Sy, ; has L elements representing the unimodal
label scores for an input X. The multimodal score is computed using:

M M
Si = Zsrcn,k = Z (wfn[él,k(fm), . ~a§L,k(fm)]c)’ (4)

m=1

The vector S}, has L candidate scores values for each k and is computed via:

M
St =3 (wilsuk(fn)}s ) (5)
m=1
Therefore, given an input vector Xy = {fn}ar from scene ¢ the estimated
pose label is Z;, and the index [ is computed using the following equations:

[ = argmax (Sg), (6)

leL

where [ is the index of the label with the highest trusted score from:

) M
[ = arg max (Zw,ﬁl{élk(fm)}j:) . (7)

leL o’

Missing Modalities. Hardware malfunctions were simulated by omitting infor-
mation from one modality (set its value to zero), proportionally adjusting the
trusts of the remaining ones, and testing the system with the new trust values.

4 Experiments

Experiments are conducted using two classification methods: multi-class linear
SVC and LDA from [17]. The experiments use five-fold cross-validation scheme
for all reported accuracies. Results indicate that illumination affects R perfor-
mance, while the performances of D and P remain constant. Recognition using
R and D is affected by visual occlusions (blankets) and P is affected by pillows.

Unimodal. Initially, the system is trained/tested with a single concatenated
vector (RDP), and the unimodal vectors R, D, P. This assessment provides a
performance basis for classification and justifies the need for a multimodal app-
roach. Results indicate that neither the concatenation of all nor the use of a
single modality can be used directly to recognize poses across all scenes.

Multimodal. The multimodal experiments show that our system reliably clas-
sifies sleep poses in ICU scenarios using modality trust. To the best of our
knowledge, there is no other method that considers our range of scenarios. Per-
formance contrast of the system in various scenes is shown in Table 1. The table
includes classification accuracies of the trusted multimodal system, a Majority-
Vote-Learner (MaVL), and an in-house implementation of the method from [9].
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Table 1. Mean multimodal sleep pose classification accuracy of two competing meth-
ods and our proposed multimodal trust using SVM (SVC) and LDA classifiers. Our
method matches the performance of two competing methods in bright clear scenes and
it outperforms them by a range of approximately 30 to 50 %.

Scene Competing Proposed
Illumination | Occlusion MaVL (RDP) | Huang (RP) | SVC (RDP) | LDA (RDP)
Bright Clear 80 100 100 100
Blanket 82 8 85.8 80.4
Blanket + Pillow | 65 6 85.8 83.6
Pillow 54 58 90 90
Medium Clear 80 88 100 100
Blanket 65 7 85.3 80.6
Blanket + Pillow | 57 7 85.3 83.6
Pillow 78 37 90 90
Dark Clear 17 - 81.2 85
Blanket 20 - 20.0 19.2
Blanket + Pillow | 32 — 17.7 18.6
Pillow 60 - 24.5 22.3

Table 2. Mean classification accuracy with incomplete multimodal information. One
modality is removed (\) and the modality trust values of the remaining ones is adjusted
for SVC and LDA estimated labels.

Scene SvC LDA

Illumination | Occlusion RD\P|RP\D DP\R ‘ RD\P|RP\D | DP\R

Bright Clear 100 100 100 100 100 100
Blanket 85 90 95 80 85 92
Blanket + Pillow | 80 85 90 88.6 83.6 83.6
Pillow 85 88 87 90 85 95

Medium Clear 100 100 100 100 100 100
Blanket 70 80 75 68.6 78.6 88.6
Blanket + Pillow | 65 70 71 73.5 81.6 83.6
Pillow 81 85 87 77.3 82 85

Dark Clear 54.1 47.7 72.7 29.5 74.1 76.4
Blanket 7.5 30 35 23.2 68.6 76.8
Blanket + Pillow | 6 27 30 12.8 53 68.9
Pillow 12 37 45 36.3 65.1 73.7

Missing Modalities. We test the limits of our system by omitting one modality
and adjusting the contributions of the remaining modalities. We report SVC and
LDA accuracies for all considered scenes in Table 2. Results show that our system
performs poorly without pressure information, achieving a classification accuracy
of 6 % using SVC and 12.8 % using LDA for dark and occluded scenes.
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Confusion Matrices. The confusion matrices of our method and [9] are com-
pared in Fig.4. The main diagonal on the right shows that our method outper-
forms the competing method in challenging scenarios.

Method [9] Proposed Method
012345678910 012345678910
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90
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40
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(™)
QWO NOOPDPWN-O

N

Fig. 4. Confusion matrices of implemented method from [9] with 16 % and our proposed
method with 70 % accuracies for dark and occluded scenarios. The confusion matrices
show how the indexes of the estimated labels [ (z-axis) match the actual labels [*
(y-axis). The main diagonal indicates that our method (right) performs better.

5 Discussion

The parameters used for the computation of HOG features are: four orientations,
16 x 16 pixels per cell, and two-by-two cells per block. The geometric moment
parameters were empirically tuned to achieve the highest pose classification accu-
racy possible. First, moments were extracted from the whole image (one-by-one
grid) and their classification performance was tested. The one-by-one grid pose
descriptors achieved a mean classification accuracy of 21 % over all scenes and
31 % for the bright, clear one. The grid dimensions were sequentially increased
and revealed that a six-by-six grid yielded the highest accuracy without dra-
matically increasing computation time. Using the six-by-six grid, the system
achieved a mean accuracy of 79 % over all scenes and 97 % for the bright and
clear scene. Concatenation of features from the whole image and the six-by-six
grid did not improve classification. The moment order was tuned alongside the
grid dimensions. Shape descriptors were generated by computing up to the third
geometric moment from each block; this yielded a ten-element vector per block
or 360-element vector per image. Greater order moments increased estimation
errors as reported in [8] and did not improve classification. The implementation
of [9] to classify poses achieved an accuracy of 100 % in scenarios with bright
and medium illumination. The performance increase (the authors reported a
94 % accuracy) is likely due to tunning parameters, higher resolution and com-
plete bed coverage of the Tekscan mat. The C' = 0.5 parameter for SVC was
estimated during training with a validation dataset.
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5.1 Conclusion

In this work, we presented a multimodal system to classify sleep poses in natural
ICU scenarios. The system handles challenging conditions by relying on measur-
able variables from environmental sensors. We validated the sensor selection and
features experimentally and showed that they provide accurate representations
of sleep poses. Quantitative results indicate that the system has a performance
increase of 6 % with respect to two existing methods in ideal scenarios and out-
performs them significantly in dark and occluded ones. Reliability of the method
was tested by sequentially omitting information from one modality and adjusting
the remaining modalities via interpolation. With this scheme, the multimodal
system achieved a pose classification accuracy of 47 % in challenging scenes.

6 Future Work

The multimodal system achieved high classification accuracies for most condi-
tions; however, some scenarios caused a performance drop (e.g., 70% in dark
scenes) as shown in Table 1 and require further investigation. The system performs
reliable classification of sleep poses in natural static ICU scenes. Nevertheless, we
are exploring methods that integrate temporal information for the analysis of pose
transitions and patterns. Extensions of this work will investigate new methods
that are robust to an unconstrained set of body pose configurations, which better
represent the poses of bed-ridden patients. Clinical deployment may impede the
use of pressure mats due to sanitation requirements, so we are actively devising
techniques that do not require this modality. Future work will explore new meth-
ods to estimate trust and combine multimodal classifiers (i.e., boosting), avoid the
use of pressure mats, and integrate temporal information.
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